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Figure 2.1. Structure of Floor 2 
We discussed basic principles of building a Mathematics Construction on the previous floor, trying to clarify the general rules of the game. Actually, mathematical constructions appear only on Floor 2, where we have to get acquainted with the surprising concept of the set. Set theory is the foundation of Mathematics and worthy of serious study. We confine ourselves only to a brief review of the most important set-theoretic concepts used directly in the future. We do not give a rigorous detailed description of the foundations of Mathematics, but we try to show how various mathematical constructions are built on these grounds. If somebody wishes to know more thoroughly the theory of sets or other directions of Mathematics, then he can turn to more serious literature.
Naturally, the initial positions of set theory related to the primary concepts of set, element, and property will be the least convincing. There are defined axiomatically by intuition and cannot in any way be logically derived from something simpler because of the fundamental absence of it. One can only determine a connection between them. However, in the future the theory is gradually acquiring a certain severity, increasing with distance from very unreliable grounds.
All objects considered in the future turn out to be sets, elements or properties of some objects. In this regard, we would like to start to gain some experience with these concepts. The simplest way to learn it is to determine new objects from the existing building material. Here, on our way, we come across the concept of a subset that is a collection of elements of the original set that satisfy some additional property. Another way of constructing sets is based on the concept of the product of sets, which is the set of all possible pairs of data elements of sets. Combining both techniques, we obtain new classes of sets. Thus, any subset of a product of sets is called a correspondence. Then we consider two independent classes of correspondences. There are relations and operators. Together it lead to the concept of equinumerosity, which is the equivalence relation of sets and assumes the existence of an invertible operator acting from a set to another. A common characteristic of all equinumerable sets is called the cardinality.
Power is the coveted staircase that leads us to the numbers. This is Floor 3 of the Mathematics Building. In particular, the natural numbers will be defined in what follows as cardinalities of non-empty finite sets.

Room 2.1. SETS
Our aim is to describe the logical structure of Mathematics. Any mathematical reasoning (geometric construction, proof of theorem, computational algorithm, etc.) is a logical chain of transformations. At each step of this process, some elementary procedure is performed, connected with the derivation of some result from already known facts. Thus, from a concrete cause, a certain consequence is deduced. However, a natural question arises, where did this reason come from? As a rule, it is itself a corollary of an earlier, deeper cause. But what guarantees the truth of this new reason? Turning the existing logical chain, we will certainly come to some root cause, from which everything else is already output. However, what is begin of this original cause? It by definition cannot be a corollary of something more elementary. Consequently, we are dealing with an axiom, the logical foundation of which is impossible in principle. So when laying the construction of the Building of Mathematics, the problem of the first brick inevitably arises.

Remark  2.1. Axioms are introduced on the basis of intuition, and not logically. As Hadamard said, strictness only illuminates what has been won by intuition. Intuition is not flawless, and can fail. Niels Bohr said that there are small and big truths. The small truth is such that rejection of it leads to a contradiction. The rejection of the great truth leads to another great truth. The small truth of Bohr in Mathematics is a theorem. This says that under certain conditions a concrete result takes place. It is worthwhile to admit that under these conditions another result is realized, as we inevitably arrive at a contradiction. Thus, a small truth fully conforms to logic. The big truth is an axiom. By abandoning it, we do not come to a contradiction, but we get another axiom, and hence another great truth. Let us recall, in particular, the dramatic story with the fifth postulate of Euclid. Where the logic rules the world, everything is deterministic. Under the existing conditions, only this result can be obtained and no other result. Any person who tries to come to some conclusions in these conditions will come to the same conclusion. There is practically no chance for real creativity, for freedom. Freedom exists where there is a choice. Freedom in Mathematics is the freedom to choose hypotheses, axioms, root causes. One can use this freedom on the basis of intuition. However, our choice is limited. It is carried always from of objectively existing possible outcomes, which guarantee the consistency of the selected hypotheses.
Remark  2.2. Logic reduces many difficult statements to a few simpler assertions that are axioms. In Mathematics, there are often situations where a large class of complex objects is reduced to a few simpler objects called a basis. Thus, the vector is represented as a linear combination of unit vectors, the function is expanded in a Fourier series, the neighborhood of a point is described by a fundamental system of neighborhoods, etc. Thus, the system of axioms is a kind of basis for a formalized mathematical theory.

The set is a most elementary notion Mathematics. This is cannot deduced to easier objects. There is impossible to give a definition with classic form “… is called the set”. Sometimes synonyms like "collection", "class", etc., are used to characterize the set, which does not clarify this very complicated situation.
Remark  2.3. Georg Сantor, trying to somehow characterize the notion of the set, said that he imagines it as an abyss.

We will use the following definition, if only it can be, in reality, considered as a definition.
Definition 2.1. The set consists of elements that have properties that allow to combine elements into a set.
Here it is clearly noted that the mysterious something called the "set" has a certain internal structure, being composed of some mysterious objects called "elements". There are united in a set, have certain distinctive features, named "properties." We are absolutely unable here to characterize none of the three existing elementary concepts separately. We can have only some very vague considerations about the relationship between them. Particularly, the set is something that is obtained as a result of consideration of some elements possessing common properties and understood as a single whole. Elements are that which is capable of possessing some properties and, being independent units, to unite into a whole set. Finally, the property is the unifying principle, through which separately existing elements can be grouped into a single set. Similar "explanations" do not have the desired degree of credibility, but in view of the apparent lack of something better, we still dwell on them. We note only that any of the introduced concepts can be reduced to two others, although we can not consider any of them to be primary.

Remark  2.4. Definition 2.1 characterizes all relationships between each pair of three considered objects. Particularly, the sentence “set consists of elements” can be denoted by Х={х,…}, i.e. the set X includes the element x and maybe some other (the pair “set–element”). We can write also х(Х, i.e. the object x is the element of the set X (element–set). The part of proposition “elements that have properties” is denoted by Р(х) that is the property P is true for the element x (property–element). We could write also х(Р) that signifies that element x has the property P (element–property). Finally, the thought “properties that allow to combine elements into a set” is usually denoted by Х={х|Р(х)}, i.e. the set the set consists precisely of those elements x that possess the property P. This proposition does not depend, in reality from the element x. Therefore, we could use shorter denotation Х={|Р()} for it (set–property). We could use also the dual assertion Р={х|х(Х}, i.e. the property P is true for the elements x of the set X only or shorter Р={|(Х}, i.e. the property Р is true for the elements of X (property–set). Note that not all of these denotations have practical use.
Remark  2.5. In the future, we have to consider exclusively with sets, elements and properties. However, this classification is very arbitrary. The same object, depending on the specific situation, can be identified both as a set, as an element, and as a property. For example, in the sentence “someone is a student of the biological faculty”, this faculty is a set, and the student is its element. On the other hand, in the statement “the biological faculty is a subdivision of an university”, the faculty is an element of the set “university”. A more meaningful example of this kind will be described on the next floor, when we already have a certain stock of mathematical objects. Note that the possibility of interpreting the same object both as an element and as a set predetermines serious troubles (see, in particular, Remark 2.13).
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Figure 2.2. Set X, element x, and property P 
The objects have the concrete names. Particularly, we can consider the concrete set X, the element x, and the property P (see Figure 2.2), where the letters "Х", "х", and "Р" are used for the denotation of the considered objects. We will use the denotations х(Х and Р(х) for signification the relations between the element and other notions. The object x is an element of the set X by first of them, and this element satisfies the property P by second proposition. 
Remark 2.6. We have already some language structure here. Particularly, we determined six letters: "Х", "х", "Р", "(", "(", of alphabet with following rules of the syntax. The letter "(" can be used after the symbol that denotes an element and before the symbol that denote a set. Particularly, the letter sequence "х(Х" is admissible, i.e. this is a word, and "(хХ" is not admissible. Then after the letter that denote a property it is necessary to use the symbol "(". Then we have the name of element and the letter ")". Thus, the ensemble of letters "Р(х)" is a word. Finally, the sense of the word "х(Х" is "the element x includes to the set X", and "Р(х)" has the sence "the element x satisfies the property P" by semantics. Now the considered words are transformed to propositions.
Is the proposition х(Х is false, then we use the denotation х(Х.

Remark  2.7. Note the redundancy of our alphabet. Particularly, the words х(Х and ((х(Х) have the same sense, i.e. there are the synonym. The value under the brackets is understood as a whole here. By mathematical logic, the proposition (х(Х) ( (((х(Х)) for all objects x and X here. Thus, it would be possible to exclude the symbol "(" from the alphabet. As always, the expansion of the alphabet allows you to operate in shorter words. 
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Figure 2.3. Determinations of the set
Consider the possible form of determination of the sets that characterizes the relations between the notions of set with elements and properties. We know that "the set consists of elements...". Therefore, the most natural method of the set definition is the recitation of all its elements, for example (see Figure 2.3),
Х = {x, y, z}. 

The symbol “X” here is the name of the considered set; the letter “=” (equality symbol) declares that the term, which is present after it, determines this set. The letters "х", "у" and "z" that is located between brackets "{" and "}" and separated by a symbol "," (comma) denote the concrete elements, and the letter "." (point) is used for the denotation the end of the proposition. 
Remark 2.8. One uses the symbol "=" not only for the definition of objects, but for the denotation of the objects equality. The use of the separator "," is not required. The word xyz can be interpreted as a list of elements too. If we would like to denote an element by many letters, we could use the brackets. For example, if we use the term (xyz), then the word xyz is the name of an element. In our case, "comma" is used solely for convenience of recording in accordance with accepted tradition and could be excluded from the alphabet. In the absence of brackets for combining letters into separate words, you can not do without commas, except in the case when it is stipulated in advance that all admissible words consist of the same number of letters. This situation is realized, for example, in the universal genetic code, where each of the words consists in accuracy of three letters. Particularly, any amino acid is encoded by nucleotide triplets, called codon.  
Remark 2.9. The order of the elements in the definition of the set is not important in contrast to the concept of the pair, see Room 2.3. Particularly, the terms {x,y} and {y,x} denote the same set, because it contain the same elements. 
Unfortunately, it should be noted that only comparatively simple sets can be determined by the above method. In particular, we will consider infinite sets (see Floor 3), for which a complete enumeration of all the elements is in principle impossible. However, there is another method of denotation of sets, which is to use a property that is characteristic of elements of the given set only. As a result, we arrive at the following denotation (see Figure 2.3):

Х = { x | P(x) }.
The above proposition means that the set X consists of those and only those elements that have the specified property, and the symbol "|" has a separative meaning. The term on the left of it denotes the name of the elements in question, and the word on the right characterizes their property.

Remark  2.10. We permanently meet in life with two methods of defining objects. So, in order to explain to anyone what is meant by the word "sun", you can directly point to this object: "the sun is that bright ball in the sky". But we can say differently: "the sun is a star around which the Earth rotates." In the first case, the object to be determined is presented directly, and in the second case, a property is specified that allows to select the given object among many others.

Remark  2.11. The two methods of set definition are considered differently from the positions of constructive mathematics. In the framework of the latter, the existence of a mathematical object is rigidly linked to the fundamental possibility of its construction. As said Andrei Markov (junior), “Existence in Mathematics is the potential feasibility of constructing." An object is considered defined here only if there is an algorithm for its immediate location. The definition of the set by means of specifying the property, characteristic exclusively for its elements, cannot be considered satisfactory in constructive Mathematics. This position is close to intuitionism that is one of the most original directions of constructing the foundations of Mathematics. It is clear that the element-wise definition of the set would be preferable, since it is usually much easier to restore the properties of already existing elements than to select an element that satisfies this property, let alone find all the elements with the specified set of properties. However, in the case when we do not have reliable means of explicitly determining the elements of a given set, it is better to give a clear description of their properties than not to have any information about the object under investigation. In modern Mathematics it is customary to give preference to constructive methods of research, which corresponds to the explicit specification of the elements of the set. However, one should not ignore non-constructive methods, in particular, setting a set by specifying the properties of its elements, in those very common cases when nothing better can be proposed. In support of the meaningfulness of an unconstructive existence, the example of Hilbert is known. Among any group of people, for sure, there is a person with the most hair. The fact that we do not know who it is, can not serve as an obstacle in its description, as a real-world object.
Remark  2.12. The objects of modern Mathematics are characterized often accurate to isomorphism that is one-to-one correspondence (see Room 2.6) such that all the properties that are taken into account are preserved in the given subject area. Thus, we analyze not so much the specific elements themselves as their characteristic properties. As Werner Heisenberg said, the world is not divided into different groups of objects, but into different groups of relationships.

Remark 2.13. The problem of definition a set by specifying its defining property is far from trivial. Consider, for example, the concept of "word". Among the objects named by this term, i.e. among the numerous elements of the set under consideration, along with such expressions as "man", "have", "red", etc. we have the "word". Thus, the element "word" belongs to a set with the same name. The fact that the same object appears in both a set and an element, as we have already noted, should not surprise us. Therefore, there are sets that contain themselves as an element. It is clear that not all sets have this property. In particular, the notion "letter" itself is not a letter. Now let the word Р(х) means that the object x is not is not an element of itself. Consider the set X with this property. Obviously, it contains the object “letter”, no object “word”. The question arises, is the property P true for the object X? If the set X an  element of itself? If 
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 is true. Then the object X satisfies the property P, because the absence of this inclusion is the sense of the property P. Therefore, we get 
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 Thus, the proposition Р(Х) and its negation too lead to a contradiction (see Figure 2.4). The Russell paradox and other similar effects greatly undermine the credibility of the admissibility of the set definition by means of a defining property and are a serious argument in favor of intuitionism. However, the rejection of such a form of the definition of a set significantly reduces the capabilities of the mathematical apparatus and appears to be too expensive a payment for overcoming the paradoxes of set theory. In any case, the non-constructive task of the set should be treated with the utmost care. 
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Figure 2.4. Russell paradox 
Remark 2.14. Effects such as Russell paradox have long been known in logic. The same nature has the liar paradox. Someone said: "I'm lying." Is it true? Let us also recall the barber paradox. In a certain village there lives a barber who shaves those and only those residents who do not shave themselves. Does he shave himself? Obviously, both a positive and a negative answer to these questions leads to a contradiction. In order to lay the foundations of Mathematics and to circumvent Russell paradox and other similar troubles, an axiomatic theory of sets was developed. It involves the introduction of a certain system of axioms in such a way that it would be possible to describe the most important set-theoretic concepts, while eliminating the emergence of paradoxes. At present there are several variants of such axiomatics, for example, the Zermelo–Frenkel system and the von Neumann–Bernays–Gödel system.

Remark 2.15. As it is not strange, such questions can have practical sense. As you know, computer programs can get stuck, which hardly provokes positive emotions for programmers. In this regard, there is a natural desire to make a testing program that would check whether an arbitrary program will go in cycles or not without running it. If such a testing program is developed, it can easily be completed so that it loops if the program under test is working properly and stops if the program under test is looped. Since the program thus compiled is itself a class of computer programs, you can try to test it in the manner indicated above. If our program goes in cycles, then by construction it should stop. Conversely, if the program finishes normally, then it should go in cycles. As a result, we can conclude that the described program can not exist. These arguments are connected with the Turing halting problem. Turing theorem is largely close to famous Gödel incompleteness theorem, which says, roughly speaking, that in any sufficiently substantial theory there is a saying that cannot be either proved or disproved. But its connection with the great Fermat theorem turns out to be quite unexpected. Suppose that the Turing theorem is not true. Then we have a universal program tester for their final stop. Then you can easily compile a program of simple enumeration of all possible values 
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 If this program ever completes its work, then the corresponding equation has a solution, and the Fermat theorem is not true. Our hypothetical tester should unequivocally specify, whether the given program will stop or not without starting the program. Thus, we certainly get an answer to the question whether the assertions of Fermat theorem are true or not. Unfortunately, the Turing theorem does not leave us the opportunity to obtain such an extravagant proof of Fermat's theorem.
Using the already existing set, it is possible to construct other sets. The simplest methods of constructing new sets are described in subsequent rooms.

Room 2.2. SUBSETS
For further work, we need to have a set of standard techniques that allow us to design new sets. Earlier it was noted that the Definition of a set is associated with specifying a property that is characteristic of elements of a given set and only for them. This circumstance suggests the simplest way of constructing new sets on the basis of what is already available. It consists in determining on the set some additional property and selecting a class of elements of this set that satisfy this property.

Consider a set X and a property Q that can be true or false for the elements of X. Determine the set 
Y = {х | (х(Х) & Q(x)}

of all element of X that satisfy the property Q (see  Figure 2.5). We will you the shorter denotation
Y = {х(Х | Q(x)}.

Definition 2.2. The set Y is called the subset XE "подмножество"  of the set X.

Remark  2.16. This object Y is, in reality a set, because it is determined by the concrete property of its elements. 
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Figure 2.5. Y is the subset of Х
Remark 2.17. The transition from more general and poorer concepts to more private and richer ones is accomplished by giving the preceding primary concepts additional properties. This is done by using the potentially existing internal reserves of the previous objects, rather than on the basis of some external intervention. Therefore, starting from the primary concepts of the set, element and property, we get the subsequent notion of a subset, carrying out actions exclusively on already existing primary objects. Subsequently, for example, the transition from a more general but also poorer concept of a groupoid to a less general but more meaningful concept of a semigroup is accomplished by introducing on the groupoid an associative property extra (see Floor 4, Block B). Definition of this property is carried out exclusively in terms of the theory of groupoids. Some groupoids are associative, forming a class of semigroups for which certain additional properties that are not characteristic of non-associative groupoids are satisfied. Objectivity of Mathematics is that something new is potentially already contained in the old regardless of the will and desire of man. The creative beginning of the researcher is manifested in the freedom of choice from a great number of potentially feasible mathematical concepts, among which a significant part is those that turn out to be the most important.
Obviously, a set Y is the subset of a set X, all elements of Y belongs to X. The proposition “the set Y is the subset of X” is denoted by Y(Х. If this proposition is false, on writes Y(Х. The relation Y(Х between considered sets is called embeding XE "вложение" . 

Remark 2.18. We can write ((Y(Х) instead Y(Х. The condition Y(Х can be denoted by equivalent form Y(Х. Sometimes, one writes "(" and "(" instead "(" and "(".
Give the easiest classification of the subsets of the given set (see Figure 2.6). Sometimes the additional property is true for all element of the initial set. Then the subset Y can be deduced to X. Therefore, any set is the subset of itself. However, we can have the inverse case. The property Y can be false for all elements of X. Therefore, the subset does not have any elements. This strange object is called the empty set and denoted by (.
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Figure 2.6. Classification of subsets
Remark 2.19. In reality, the existence of the empty set is not obviously. It would seem, there is an obvious contradiction with Definition 2.1, according to which the set must consist of something. However, we call the entered object a set, since it certainly corresponds to the definition of a subset, but it would not be entirely logical if any subset did not belong to the class of sets. Besides, we can denote it by a property, for example, 
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 Later, having entered Floor 3, we will see that the empty set (the undoubted and absolute "nothing") allows us to determine zero and other natural numbers. Thus, this concept turns out to be extremely meaningful and necessary for the erection of our Building. We declare (this is the axiom) that there is something that does not contain decisively any elements, but, nevertheless, called for some reason a set.

The empty set is a subset of each set.
Remark 2.20. We deduced from this property that the cardinality of the empty set is less than the cardinality of each non-empty set. It will be the basis for definition the number “zero” (see Floor 3).

If the property Q is true for all elements of the set X, then we write Q(x). The proposition (х(Х: Q(x) means that there exists an element of X that satisfies this property. Sometimes one uses the shorter denotation (х: Q(x) and (х: Q(x), if it is clear, which set is considered. The symbols  "(" and "(" are called quantifiers of universality and existence.
Remark 2.21. The propositions (х: Q(x) and (х: Q(x) does not depends from the symbol x, i.e. its sense does not change if we replace x by other symbol. One uses often the denotation Q(x) (х or its more complete analogue Q(x) (х(Х instead (х: Q(x).

The sets X and Y are equal, i.e. Х = Y, if we have both conclusions Y(Х and Х(Y. The elements x and y are equal if {x} = {y}.

Remark 2.22. By the last definition the following proposition holds (X=Y) ( ((Y(Х) & (Х(Y)). The term at the left-hand side here can be interpreted as a shorter denotation of its right hand-side. The replenishment of the alphabet with new letters pursues a single goal that is using of too long words. By the way, it would be possible to reduce the equality of sets from the equality of elements, and not vice versa. Recall that the concepts of the set and the element we introduced simultaneously, but did not derive one of the other. 
Remark 2.23. The symbol “=” is used here for the declaration of the relationship between two objects, not for its definition. These cases are quite easy to distinguish by the syntax rules. We write the term under the brackets for the definition of an object and the name of another object for the denotation an equality. The fact of using a same letter in words with different semantic loads should not cause any special surprise. We have the same situation for the natural languages too.

The equal sets have the same elements. 
Remark 2.24. The fact of equality of two sets means that we have, in reality, the one sets with two names. This is possible, if specifying a set by enumerating its elements, a different order of location is used, for example, {x,у} = {y,x}. If we determine the sets by the properties of its elements, then the equality of the set is realized if these properties are equivalent. For example, the set of even numbers coincides with the set of numbers obtained as a result of adding a unit to an arbitrary odd number. 
If the proposition Х=Y is false, we use the denotation Х(Y. If the set Y belongs to the set X without its equality, then Y is called the proper subset of the set X. The set X is larger than Y, and Y is narrower than X for this case, besides the embedding Y(Х is strict. Particularly, the embedding of the empty set to each non-empty one is strict.
Remark 2.25. The symbols ( and = and its negations are the relations for the class of sets (see  Room 2.5). Sometimes one uses the symbol ( for the denotation of the strict embedding only. Non-strict embedding is denoted by the symbol ( for this case. Remember that we used the letter ( for denoting the implication in Floоr 1.
The set of all subsets of the given set is called its Boolean. The Boolean of the set X is denoted by ((Х) that is ((Х) = {Y | Y(Х } (see Figure 2.7). 
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Figure 2.7. Boolean of the set of a two elements set
Remark 2.26. The considered object is defined in accordance with the rules for defining the set. However, it is far from obvious that something made up of sets is itself a set. Earlier, it would seem that any set necessarily consists of elements, but not from other sets. Moreover, the use of the concept of a set of sets leads to the paradoxes of set theory (see, for example, Remark 2.13 and Remark 2.65). However, in the framework of this course, we largely adhere to the naive set theory. We will ignore possible complications and consider the Boolean set, and in our trip we will try not to get into the darkest nooks of set theory. Thus, the likelihood of experiencing major trouble will be relatively small. A certain threat remains, for, as Herman Weil remarked that it is surprising not that such contradictions arose, but that they appeared at such a late stage of the game.

Remark 2.27. Recall that the accepted separation of mathematical objects into sets, elements and properties is rather conditional. Particularly, the object X is a set with respect to an element x, if we have 
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 is true, because any set is the subset of itself and the element of its Boolean. 
Consider an empty set X and its subsets M and N. Determine new subsets by following equalities 
M ( N  =  { x(X | (x(M) ( (x(N) },    

M SYMBOL 199 \f "Symbol" N  =  { x(X | (x(M) & (x(N) },

M \ N  = { x(X | (x(M)  & (x(N) },
М SYMBOL 68 \f "Symbol" N  =  (M \ N) ( (N \ M).

The terms M(N, M(N, M\N и М(N are called, the union, the intersection, the difference and the symmetric difference of the sets M and N respectively. There are the operations on the sets (more exact, on the subsets of X).  
Remark 2.28. This means that the result is subsets of X, i.e. objects of the same nature as the original sets. The general concept of the operation will be introduced on Floor 4. We could determine operations on arbitrary sets, and not on subsets of the same sets. However, the above Definition more accurately reflects the true property of the considered procedure. The geometric sense of the introduced constructions is illustrated by Venn diagrams, see Figure 2.8. Here we show operations on planar sets, i.e. subsets of the plane. Naturally, the very concept of a plane is not yet available. It can only be determined on the Floor 3 after acquaintance with the real numbers. 
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Figure 2.8. Operations on sets (Venn diagrams)
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Figure 2.9. Partitions of sets
If we have the partition N(M, then the difference M\N is called the complement of the set N in M. The sets M and N are not intersect if its intersection is empty.  The sets M and N determine the partition of a set X, if there are non-intersect and its union is X. Particularly, if  N(M, then the sets N and M\N determine the partition of the set M. These notions are illustrated of Figure 2.9. 

We can determine new sets on the base of the set operations. However, there exists another method for this problem.
Room 2.3. SET PRODUCT
We know that {x,y} and {y,x} are the same set (or two equal sets). However, we can have an interest to constructions, where the order of elements is important. The pair of elements x and y is the set XE "пара"  (х,у) = {{x},{x,y}}.
Remark 2.29. The last formula determines, in reality, a set. The term (х,у) of its left-hand side (the word, see Floor 1) is the denomination (short form of denotation) of the set that is definite by the concrete enumeration of elements {x} and {x,y}. In this way, we again call something consisting of sets a set. Moreover, the elements x and y are not equal here. Indeed, from the definition of the set equality it follows that the 
(х,у) = (х',у') is true whenever these sets consist of the same elements. It is obvious that the equality 
{x} = {x',y'} is impossible (these sets have the different cardinalities, see  Room 2.7). Then the considered pairs can be equal if {x} = {x'}, {x,y} = {x', y'}. From the first equality it follows that x = x'. Then y = y' because of second equality. Thus, the objects (х,у) and (у,х) can by equal if х = у only. Sometimes, one defines the pair by this properties, i.e. one declares that the pair (х,у) is the such object that the equality 
(х,у) = (х',у') can be true whenever x = x',  y = y'. This definition characterizes the pair, in reality. However, this is not constructive. By the way, the pair (х,у) can be characterized by an oriented graph,  XE "граф:ориентируемый" and the {x,y} is described a non-oriented graph (see  Figure 2.10).
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Figure 2.10. Sets and pairs 

Remark 2.30. One can also introduce the concept of a triple of elements 
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 as the term {{x},{x,y},{x,y,z}}. The finite ordered ensemble (х1,…,хn) can be determined analogically. This is called the tuple XE "кортеж" , the word or the vector of n degree. 
Using the pairs, we can determine an additional method of the definition of new sets. 
Definition 2.3. The product  XE "произведение:множеств" of sets Х and Y is the set
Х(Y  =  {(х,у) | (x(X) & (y(Y)}.

Remark 2.31. One use also the names the direct product or the Descartes product of the sets.

Remark 2.32. It seems that the product of sets looks like a normal operation, like a union or an intersection. However, here there is a fundamental difference. The result of the operations considered earlier are objects of the same nature as the original sets, in particular, subsets of some set X. In this case we get an object of a completely different structure. Thus, the product of linear sets is a flat set (see Figure 2.11). Elements of the product are pairs, i.e. sets of sets, while the original sets consist of ordinary elements. Thus, on a Boolean of some nonempty set the product is not an algebraic operation (see Floor 4). The result of the operations considered earlier are objects of the same nature as the original sets, in particular, subsets of some set X. Now we get an object of a different structure. Thus, the product of linear sets is a flat set (see Figure 2.11). The product consist of pairs, but the initial sets consists of the usual elements. Thus, the product is not an algebraic operation (see Floor 4) on the Boolean of a non-empty set.
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Figure 2.11. Product of sets
Remark 2.33. One of the approaches to axiomatization of the set theory and overcoming paradoxes arising in it is type theory. It is based on the special classification of all mathematical objects by types. In particular, ordinary elements have the first type, natural sets consisting of elements have the second, sets of sets have the third, etc. In this case, the inclusion of х(у is considered admissible (the syntax rule!) only if the type of object x is one less than the type of object y. According to this classification, the set Boolean and the pair of elements belong to the third type, since they are composed of sets. Then the product of sets must already be assigned to the fourth type, because it consists of pairs, i.e. objects of the third type. Thus, the product of sets differs significantly from their intersection, union, etc. of ordinary sets having the second type.

Remark 2.34. The set product is not commutative and associative, i.e. we have the inequalities  
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for the general case. The first relation follows from the definition of the pair. The object 
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 contains of pairs, where first component is a pair, the object contains of pairs, where second component is a pair, and 
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 contains of triples. The product  Х((  is empty for all X because the absence of the pairs. The product Х(Х is denoted be Х2 (the high degrees of set are definite analogically). Particularly, 
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 is the Euclid plan that is the product of the set  (numerical line) by 
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. 
Using the set product, one determines correspondences that is the way to Floor 3. 

Remark 2.35. Both methods of determination of new sets (using of subsets and products) will be using for the definition of set scale and the general notion of mathematical structure (see Floor 5). 
Room 2.4. CORRECPONDENCES
We considered before methods of definition of new sets on the base of the given sets. Combining these methods, we determine new objects.  
Definition 2.4. Any subset of the product of sets is called the correspondence of these sets. 
Remark 2.36. Sometimes, this is called the relation. However, we will use this name for the special class of the correspondences (see next room). One uses also the name multivalued function (see Room 2.6).  

Let ( be a correspondence between sets X and Y. If (х,у)((, then one says that the element x is in the correspondence ( with an element y and denotes by х(у.  The sets 
D(() = {x(X | (y(Y: x(y}, R(() = {y(Y | (x(X: x(y}

are called the domain and the range of the correspondence ( of sets Х and Y (see  Figure 2.12). These sets are called also the projections of the correspondence ( to the sets Х and Y. 
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Figure 2.12. Соответствие ( множеств X и Y
For any elements х(Х and y(Y the sets 
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are called the image and the pre-image of the element y by the correspondence ( (see Figure 2.13). Note also the following obvious equalities
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Figure 2.13. Image and pre-image of correspondence
Example 2.1. Let us have the sets  X = {x1, x2, x3}, Y = {y1, y2, y3,y4} and its correspondence ( determined by the equality
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We get D(() = {x1,x3}, R(() = Y. Determine the images and the pre-images of the elements
((x1) = {y2, y4}, ((x2) = {(}, ((x3) = {y3},

( -1(y) = {x3}, (-1(y2) = {x1 , x3}, (-1(y3) = {x3}, (-1(y4) = {x1}.

The considered correspondence can be presented by matrix  XE "матрица" А = (аij), where аij = 1 if xi(yj  and аij = 0 otherwise, i = 1,2,3; j = 1,2,3,4. Thus, we find the correspondence matrix 
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Another form of the determination of correspondences is the correspondence graph (see Figure 2.14). 


[image: image35.wmf] 

 х

1

 

 х

2

 

 х

3

 

у

1

 

 у

2

 

 у

3

 

 у

4

 


Figure 2.14. Correspondence graph of Example 2.1  

Remark 2.37. We will use the description of the correspondences by graphs and matrixes for the analysis of the ordered objects (see Floor 4, Блок А), which are determined by special correspondences. For the general case the graph is the pair 
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 where Х is a set of elements that are called the vertexes, and Y is a set of elements 
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 (the edge connecting the vertexes x and y) or 
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 (the edge the vertex x to the vertex y), where 
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 The properties of graphs are considered by graph theory. We will use the graphs for analysis of the categories in Floor 5.  
For any correspondence ( of sets Х and Y one determine dual correspondence (* of the sets Y and X such that the condition  у(*х is true whenever х(у (see Figure 2.15).

Remark 2.38. The correspondence matrix and the correspondence graph for the dual correspondence are the transpose matrix (it is obtained after changing of the order of indexes for all elements of the initial matrix) and the dual graph (it is obtained after inversing of all arrows of the initial graph). Different forms of duality will be considered in future. 
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Figure 2.15. Determination of the dual correspondence
Now we will consider two special classes of correspondences. The order of its consideration is not important. We will use both classes in Room 2.7, which is placed near the stair to Floor 3.
Room 2.5. RELATIONS
One of the most important class of correspondences is the relations.
Definition 2.5. The correspondence between the set Х and Х is called the relation on X. 
Remark 2.39. The relation on the set X is a subset of
[image: image41.wmf]2
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 This is it binary, because it connects two elements of the given set. One considers also the relations of n order that are subsets of the set 
[image: image42.wmf].

n

X

 Particularly, first order relation is a subset of the set X. 
Consider most important classes of relations. The relation ( on the set X is called reflexive, if  х(х for all х(Х; this is symmetric, if from х(у it follows that у(х for all х,у(Х; this is transitive XE "отношение:транзитивное" , if from х(у and у(z it follows always х(z (see Figure 2.16).
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Figure 2.16. Lasses of relations
Remark 2.40. We consider also other relations. For example anti-symmetric relations will be used for the definition of the ordered objects (see Floor 4, Block А). We can determine the dual relation. Partially, the relation ( is symmetric, then (* = (. 

The multiplicity of natural numbers, the parallelism of lines, the embedding of sets, the relation of "being countrymen" for people are reflexive. The relation “the sum is even” for natural numbers, the perpendicularity of lines, the intersection of sets, the relation of "being spouses" to people. The relations "more" for real numbers, "location below" for function graphs, are transitive, embedding of sets, causality of events are transitive. The relations possessing all the above properties simultaneously are extremely important.

Definition 2.6. The reflexive symmetric transitive relation is called the equivalence. 
Remark 2.41. We determined the equivalence as the logic operation in Floor 1. Now this name has another sense; this is the relation.  
Remark 2.42. It seems that the definition of the equivalence is not correct. Indeed, from х(у it follows always the condition у(х because of the symmetry. If we have х(у and у(х too, then we get х(х because of the transitivity. We do not have any constraints with respect to the element x. Therefore, the previous condition is true for all x that is the reflexivity. Thus, we follow this property from the symmetry and the transitivity. It seems we do not have any necessity to use the reflexive property for the definition of the equivalence. However, we supposed the element x is in the relation with an element of the given set. Therefore, we cannot guaranty the truth of the condition х(х for the arbitrary x. 
Examples of equivalence will be the parallelism of lines, the similarity of triangles, the coincidence of any questionnaire feature in people (citizenship, age, height, weight, etc.). The propositions х and у are equivalent, if the condition х ( у is true. The set of all elements of X that is equivalent to x with respect the relation to the ( is called the equivalence class with the representative x is denoted by [x] or more complete 
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Definition 2.7. The set Х/( of all equivalence classes of the set Х with respect to the relation  ( is called the factor set.   XE "фактормножество"  
Remark 2.43. The factor set consists from sets. By type theory, it is classified in the same way as the 

Each equivalence class is uniquely determined by any of its representatives. The equivalence classes form a partition of the given set (see Figure 2.17). On the other hand, if there is a partition of the set X, then the relation of all pairs (х,у) such that the elements x and y belong to the same subset of the partition is an equivalence. The transformation of the set to its factor set is called the factorization. 
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Figure 2.17. Factor set
Remark 2.44. Elements х and у are equivalent if and only if [x] = [y]. Therefore, the factorization transforms the equivalence to the equality. The operator ( that maps the arbitrary element of the set to the corresponding equivalence class is called the canonic projection. The factorization is the union of objects to groups on the base of the coincidence of their properties that determine equivalence. In reality, each classification is the factorization. 
Remark 2.45. Mathematics, as a rule, does not operate with usual sets, but with factor sets. This means that the properties of the object under study are most often not completely restored, but only to a certain level of understanding, beyond which two objects are considered not distinguishable (equivalent); can be perceived as one object. Therefore, within the framework of topology, a circle and a square have the same properties, because each of them can be continuously deformed into another, in contrast, for example, from a ring that can not be continuously transformed into a circle. The possibility of a one-to-one and mutually continuous mapping of one object to another is an equivalence relation for this theory (see Floor 4, Block C). Thus, in topology, not specific objects are studied, but some properties within which the circle and the square are not distinguishable. A circle, a square, a triangle, and many other planar objects form an equivalence class (an element of the factor set), which is the subject of research in topology. In Mathematics, an object is most often characterized up to an isomorphism that is a transformation that preserves all the properties of an object that are considered to be principled in a given subject area.

Consider examples of factor sets, which are important for the consequent analysis.
Example 2.2. Comparability. Let 
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 be the set of natural numbers. Suppose the condition х(у means that the value | х – у | is divisible by three. It is said that the numbers x and y are comparable modulo 3. Then the set 
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 is divided by the classes (see Figure 2.18)
 [1] = {1,4,7,10, ...},  [2] = {2,5,8,11, ...},  [3] = {3,6,9,12, ...}.

All elements of the same class have the same residual after dividing by three. Its factor set is 
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Remark 2.46. It is interesting that the clock hand indicates time in accordance with the comparability modulo 12. In particular, 8 hours and 20 hours are equivalent (as well as a similar time on any day), being designated by the same position of the arrows. In this connection, 20 hours are often called "8 pm". 
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Figure 2.18. Factor set 
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Example 2.3. Linear dependence. The linear dependence of the non-zero vectors (see Floor 4, Block C) on the plan is the equivalence (see Figure 2.19). Then the corresponding factor set is a collection of lines passing through the origin, and the last point is excluded from consideration, without being an element of the original set. 
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Figure 2.19. Linear dependence of vectors
Example 2.4. Fractional part of numbers. Let 
[image: image52.wmf]¡

 be the set of real numbers. Suppose the condition х(у is true, if the difference x – y is an integer number. For any different number х and у that satisfies the inequalities 0(х<1 and 0(у<1 the corresponding equivalence classes [x] and [у] are different. Note the equality [0] = [1]. Any point of the interval (1,2) has an equivalent point from the interval (0,1), etc. Thus, as the number on the line increases or decreases, the corresponding equivalence class periodically changes with a period equal to one. Therefore, the factor set 
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 can be interpreted as a circle with unit length (see Figure 2.20).

Remark 2.47. This factor set will be considered in Floor 4, Block C, where we will determine the corresponding factor topology.
We will consider a special equivalence (this is called the equinumerosity), which give the way to Floor 3. However, its definition uses a special class of correspondences that is operators.

 Remark 2.48. Following the accepted "architectural" interpretation of mathematical events, we can conclude that now we are in a corridor that leads to the door in the Room 2.7. However, this door was locked. To continue driving along our route, you need two keys. One of them (the equivalence relation) we found in this room. But for the second key (the concept of the bijection), one has yet to go to Room 2.6, where you can only get from Room 2.4, returning to the concept of correspondence. 

[image: image54.wmf]¡

 

/

r

¡

 

[3/4]

 

3/4

 

1

 

[1/2]

 

1/2

 

[1/4]

 

1/4

 

[0] = [1]

 

0

 

p

 

x

r

y

: (

x

-

y

)

Î

¢

 


Figure 2.20. Factor set 
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is interpreted as a circle 
Room 2.6. OPERATORS
Consider another class of correspondences that is one of the most important mathematical objects.
Definition 2.8. The correspondence А of sets X and Y is called the operator that maps from X to Y, if D(А) = Х, and for any element x of X and arbitrary y,z of А(x) the following equality holds 
у = z.

Remark 2.49. The operator is called often the mapping and the transformation. One uses also the name "function" XE "функция" , which has, as a rule, a narrower sense (see Example 2.5). The equality of the operator domain to the set X is not necessarily. We have the operator A from the set X to Y with domain D(А) for this case.

Remark 2.50. The pre-image of the operator domain consists one element (see Figure 2.21). It seems that this definition is easier. However, we do not know what is the number "one" so far. 
Remark 2.51. Definition 2.8 corresponds to the concept of the operator graph adopted in analysis. The operator here is a rule that associates with each element from its domain the corresponding image. However, in fact, any such operator has a concrete graph and is uniquely determined by it. Thus, there is no reason to distinguish between these two concepts. From the logical point of view, the above definition of the operator is preferable, since it is not connected with the term "rule" that needs clarification. This is derived directly from the basic concepts of set theory, being a specific class of correspondences, i.e. some set of pairs of elements. 
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Figure 2.21. The correspondence А is the operator
An operator A that maps the set A to Y is denoted by
[image: image57.wmf]:.
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 The domain and the range of the operator are the same sense as for general correspondences. If хАу, then y is the value of the operator A at the element x or the image of the element x under the operator A. This is denoted by 
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 The pre-image of an element under the operator is the pre-image of the element of the correspondence under consideration.
Remark 2.52. Each correspondence A between sets X and Y can be interpreted as the operator 
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 such that for all element х(Х we determine the subset Ах of Y that is the image of the  correspondence. Therefore, it is called also the multivalued function of the set Х to the set Y. 
Remark 2.53. For any operator the dual correspondence is not an operator for the general case. It will be an operator whenever the initial operator is invertible. In this case, the dual correspondence is the inverse operator defined below. 
Determine most important classes of operators 
[image: image60.wmf]:.

AXY

®

 The operator A is the surjection, if for all у(Y there exists an element х(Х such that 
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 This is the injection, if from the equality 
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 The operator is the bijection or the one-to-one mapping, if this is surjection and injection simultaneously. 
Remark 2.54. Recall that in the study of another class of correspondence (relations), we also first considered certain specific classes of that objects (reflexive, symmetric and transitive relations), and then passed on to objects that possessed all the selected properties in the aggregate (equivalence).

The operator is the surjection, if any element of Y has a non-empty pre-image. This is the injection, if each element has at most one pre-image. Finally, the operator is the surjection, if any element of Y has a unique one pre-image.
Consider important examples of operator. 
Example 2.5. Function. If Х and Y are numerical sets (it will be definite in Floor 3), then the operator
[image: image64.wmf]:
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is called the function. One write A(x) instead Ax here. Consider the functions determining by the equalities (see Figure 2.22):  

А1(х) = х3 – х, А2(х)  = 1+1/(|x|-1),  А3(х) = х3, А4(х) = х2.

The operator А1 is the surjection, А2 is the injection, А3 is the bijection, and А4 is not the surjection and the injection. The last case is more typical.  
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Figure 2.22. Example of operators 
Remark 2.55. The function theory is one of the most important branch of mathematical analysis. This includes the theory of functions of real variable and the theory of functions of complex variable.   
Example 2.6. Characteristic function XE "функция:характеристическая" . Let M is a subset of a set X. Determine an operator 
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 if х(М (see Figure 2.23). This operator is called the characteristic function of the set M. This is the example of functional that is on operator with numerical values. 
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Figure 2.23. Characteristic function
Remark 2.56. The operator with numerical domain is called the abstract function. 
Example 2.7. Canonical projection. Let us have a set X with equivalence (. Consider an operator 
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 that maps an arbitrary element x of the set X to the equivalence class [x] (see Figure 2.18 and Figure 2.21). We have the surjection that is called the canonical projection. In particular, the canonical projector of Example 2.2 maps the equivalent natural numbers 1, 4, 7, etc. to the same class [1]. The canonic projector of Example 2.4 maps a real number to its fractional part, which can be interpreted as a point of the circle with unit length (see Figure 2.18). Consider also the integer part of number. This is the function with set of real number as the domain and the set of integer number as the range. It maps a real number to its integer part. Determine the equivalence such that two real numbers are equivalent if these numbers have the same integer part (see Figure 2.24). This surjection is canonical projection. In principle, each surjection determine an equivalence, with respect to which it will be the canonical projection. This is, for example, for the operators (X : Х ( Y ( X, (Y : Х ( Y ( Y that are determine by the equalities (see Figure 2.25)

(X(х,у) = х, (Y(х,у) = у  (x(X, y(Y.
Its values are called the projections of the element (х,у) to the sets X and Y.
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Figure 2.24. Integer part of number determine the equivalence
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Figure 2.25. Projections
Example 2.8. Canonical embedding. Let Y be a subset of a set Х. Consider the operator 
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 that maps the element х of the set Y the same element but from the set Х. It is called the canonical embedding, and this is injection. Particularly, any element from the complement X\Y has the empty pre-image, and each element of Y has unique pre-image. 
Remark 2.57. We will use the canonical projection and canonical embedding in Floor 5 for determining the factor object and the subobject, which are extensions of the factor set and the subset. 
Remark 2.58. We also note arithmetic functions that are used in number theory, the arguments and values of which are natural numbers. Boolean functions of mathematical logic have the numbers 0 and 1 as the arguments and the values. Finally, the basis of algebra (see Floor 4, Block B) is operations that represent operators that associate with some fixed quantity of elements of a given set (for example, two for binary operations) is a concrete element of the same set. 
Consider sets Х and Y, operator 
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and the equality
                                                                  Ах = у,                                                                 (2.1)

where х(Х, y(Y. An equation characterized by the operator A is the problem of determining an element х(Х  that is called its solution and satisfies (2.1) for a given value у(Y. The equation is the problem of restoring the pre-image of an element under the action of a given operator. If the operator A is a surjection, then for any element y the equation (2.1) is solvable, i.e. has a solution, perhaps not the only one. If A is an injection, then the equation can not have two solutions, but it can be insolvable. Finally, if the operator is a bijection, then for all у(Y the equation has a unique solution х(Х. The relationship between properties of the operator and the equation is illustrated in Figure 2.26 and Table 2.1.
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Figure 2.26. Property of operators, transformations and equations 
Table 2.1. Classification of operators, transformations and equations 
	set theory
	geometry (see Figure 2.26)
	algebra

	оператор  A : X ( Y
	transformation A from the set X to Y
	equation  Ax = y

	A is surjection  
	any element of Y is accessible from X by means of the transformation A
	equation is always solvable 

	A is injection 
	it is impossible to obtain the elements of Y by the transformation A in two different ways
	equation can not have two solution

	A is bijection 
	it is possible to obtain each element of Y by the transformation A in unique way 
	equation has always unique solution


Remark. 2.59. In fact, we have three interpretations of the same object. In set-theoretic (analytic) language, it is an operator, this is a transformation on a geometric one, and this is an equation in an algebraic one (algebra historically arose as a theory of equations). Obviously, any operator uniquely characterizes the transformation and defines the corresponding equation. Similarly, the transformation is an operator and defines an equation. Finally, the equation necessarily corresponds to some operator, i.e. transformation. Any statement concerning the properties of an operator can be translated from an analytical one to a geometric or algebraic language. This procedure should be treated in the same way as translation of the text from the language of English into Chinese or Turkish. The true meaning of the statement (under the condition of an exact translation) does not change at all.
Remark 2.60. Depending on the type of operator and the sets on which it operates, different types of equations can be obtained. In particular, if the unknown object is a finite set of numbers (vector), and the operator is a function or a finite set of functions, then the equation is said to be algebraic. In number theory, Diophantine equations are studied, there are algebraic equations with integer coefficients whose solutions are defined in the class of integers or rational numbers. If the domain of the operator is a set of functions, then it corresponds to functional equations. In particular, one of the most extensive sections of modern Mathematics is the theory of differential equations, in which the considered operator depends from the unknown function (or system of functions) and its derivatives. An equation involving derivatives with respect to one argument is called an ordinary differential equation. In the presence of derivatives with respect to several independent variables, partial differential equations are obtained, also called equations of mathematical physics. If we have unknown functions under an integral, then we obtain integral equations. Integro differential equations include both the derivatives and integrals of the unknown functions. Equations will be considered in the Floor 3 for the definition of certain classes of numerical sets, and also in Stage 4 when studying algebraic structures.

If the operator 
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where х is the solution of the equation (2.1) for the given element y. Thus, this equation has the unique solution 
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 The concept of a bijection allows us to introduce an equivalence relation on sets that brings us closer to the desired staircase leading to Floor, where we will meet with numbers. 
Room 2.7. EQUINUMEROSITY
Now we use two different correspondences. There are a relation that is an equivalence and an operator that is a bijection.  
Definition 2.9.  The sets Х and Y are equinumerous XE "множества:равномощные" , if there exists a bijection from X to Y. 
The equinumerosity is the reflexive relation, because the unit operator 
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 is the bijection from the set X to X. If the operator 
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is the bijection too. Therefore, the equinumerosity is symmetric. Let us have the bijection 
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 that is denoted by ВА and called the composition operator by the equality Сх = В(Ах). The operator C is the bijection with inverse operator 
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Figure 2.27. Equinumerosity is the equivalence
Remark 2.61. The composition is not the operation on the set of operators. It has the sense only if the range of the first operator is equal to the domain of the second one. The composition of the operator A and inverse operator А-1 (and the composition of А-1 and А too) is the unit operator. 

We know that each equivalence determine the partition of the set by the equivalence classes, besides any class is characterized by each its representative.  
Definition 2.10. The cardinality of the set X is the equivalence class [X] with respect to the equinumerosity with the representative X.
By this definition the cardinality is determine by the formula 
[X] = {Y | Y ( X}.

Therefore, the equinumerous sets have the same cardinality. 
Remark 2.62. Sometimes, one says that the cardinality is the common property of all sets between which one can establish a one-to-one mapping. This is true, but we can not use it, because this definition is not constructive. By this definition we do not know, what this property is. 
Remark 2.63. By type theory the cardinality has the same type as the pair and the Boolean, because it consists of sets.   
It is interesting, what relation between the cardinality of different sets is.  
Example 2.9. Let us consider the life situation. A group of students entered the room. Perhaps all sat on the chairs, and there were no empty seats. Thus, between the sets of people and chairs a bijection is established. It is possible that some of the students did not honor the teacher with their presence, and some of the chairs remained unoccupied. Then the set of students is equinumerous to proper subset of the set of chairs. Finally, perhaps, on the contrary, the lecture aroused so much interest that it was simply not enough for everyone who wanted to listen to the chairs. In this case, already the set of chairs is equinumerous to the proper subset of the set of people.

By the considered example, we can have three different cases: 
1)  Х (Y,

2)  ((Y '(Y: Х ( Y ') & (( (X '( X: Х ( Y '),

3)  (( (Y '(Y: Х ( Y ') & ((X '(X: Х ' ( Y ).

This situation is typical for all sets. In particular, by Cantor-Bernstein theorem, in the case when the set X is equinumerous to a subset of Y and Y is equinumerous to a subset of X, the sets X and Y are equinumerous.

If two sets are not equinumerous, then one of them has a proper subset that is equinumerous to the second set (see Figure 2.28). Then we obtain the method of comparison of sets. Particularly, if the set X is equinumerous to the proper subset of the set Y, then the cardinality of the set X is less than the cardinality of the set Y or the cardinality of the set is greater than the cardinality of the set X. This is denoted by [X] < [Y] or [X] > [Y]. If we have the embedding Х(Y, and these sets can be equal, then the following inequality holds [X] SYMBOL 163 \f "Symbol" [Y], where the symbol "(" means the truth of the relations "<" or "=". For all non-empty set Х we have the following embedding ((Х, from where follows the inequality [(] < [X]. 

[image: image91.emf] 

A  

A : X  Y   is a surjection     [ X ]   >  [ Y ]    

A  

  o  

  x  

х '    

  o  

  z  

  o  

  o  

y     y '  

  o  

Y  

X  

  o  

  x  

  х '  

  o  

  o  

  y  

  y '  

  o  

Y  

X  

A : X  Y   is a   bi rjection   [ X ]   =   [ Y ]    

A : X  Y   is a n   in jection   [ X ]   < [ Y ]    

A  

  o  

  y  

  y '  

  o  

  z  

  o  

  o  

x y     x '    

  o  

X  

Y  


Figure 2.28. Relations between cardinalities of sets
Remark 2.64. The relation "<" on the set Card of all cardinalities is transitive and antireflexive. It means that no cardinality can be less than itself. By the way, the relation “less” on the numerical sets has analogical properties; and this fact is by no means an accidental coincidence (see Floor 3). The relation ( on the set Card is reflexive, transitive and antisymmetric that is an order relation (see Floor 4, Блок А). Besides, the cardinality of the empty set is the smallest element in the ordered set of cardinalities.
The natural question arises whether there exists a set Y such that [X] <[Y] holds for any set X, that is, is there a lot of maximum power? A negative answer to it is given by the Cantor theorem, according to which the inequality [X] < [(X)] holds for any set X; any set there is a set of greatest cardinality.
Remark 2.65. Indeed, for all element x of the set X we can determine the element {x} of its Boolean. However, the Boolean includes other elements extra, for example, empty set. Therefore, the set X is equinumerous to the proper subset of its Boolean; and we obtain the assertion of the Cantor theorem. подмножеству своего булеана, что и утверждает теорема Кантора. Cantor paradox is connected with this result. Let X be the set of all sets. Then it includes the Boolean of X that is the concrete set. Therefore, the cardinality of the Boolean is not greater than the cardinality of X, because this is the subset of X. However, this contradicts the Cantor theorem. The overcoming of this paradox is connected with the recognition of the incorrectness of the concept of the set of all sets. Recall also that, according to the type theory, X is not a usual set, being the collection of sets. However, the "set of all sets" object is characterized quite clearly, satisfies Definition 2.1 and, as it were, should be a set. Well, that's the paradox!
Our brief excursion into the set theory is completed, and we can proceed to the rise to the next floor. There live numbers, perhaps the most representative tenants of the Building Mathematics. However, we will return to Floor 2 from time to time, where the keys to the rooms with different numerical sets are located. In the process of getting to know them we will have to return to the second floor Thus, the Definition of new classes of numbers will be accompanied by the completion of our knowledge of the general sets.

Remark 2.66. There is a logic in that after the theory of sets, which is the basis of all Mathematics, give a description of the general theory of such sets that are endowed with certain specific properties. This corresponds to the abstract concepts of the structured set and the category considered in Floor 5. Then we could consider the general classes of mathematical structures (ordered, algebraic, etc.) that is the base of our Floor 4. After that, we could describe the concrete classes of these structures, for example, the groupoids and the rings as partial cases of algebraic objects. Following the principle "from the general to the particular" in the class of groupoids, we could single out monoids and groups. In accordance with this logic, such concrete mathematical objects as numbers should appear at the very end. However, we prefer another form of presentation. At first, in the immediate transition from sets to concrete structures it is not clear beforehand which properties the sets should be endowed with. Therefore, it would be better to start by considering a set of concrete content sets (in particular, numbers) for which the corresponding properties are established in a natural way, and then try to consider sets of a general form endowed with similar properties. In addition, for a successful understanding of the concepts introduced, we would like to have some illustrative examples. Finally, one should keep in mind that specific mathematical objects (for example, sets of natural, real, etc. numbers) have several qualitatively different properties simultaneously (numbers can be added, ordered, etc.), which corresponds to the notion of a mixed structure. Thus, the use of a clear pyramid: "a set of general form" - "structure or category in general" - "a specific type of structure" - "a concrete class of structures of a given type" - ... - "a concrete mathematical object" will cause this object will appear many times, and, perhaps, at different levels of this pyramid. Therefore, we depart from the logical principle "from the general to the particular" and start with the derivation from set theory of concrete objects that are numbers. This amazing fact is also as a vivid illustration of the effectiveness of set theory. Indeed, one can be amazed how from the extremely abstract theory of sets the quite concrete objects with which we constantly meet in our everyday life naturally follow. Later, after a preliminary analysis of sets that are direct generalizations of concrete numerical classes (the ordered set serves as a generalization of the sequence of natural numbers arranged in ascending order, the group generalizes the set of integers with the operation of addition, etc.), we come to the general concepts of structure and category. This will show the principle possibility of representing the Mathematics Building in the form of a pyramid.

Remark 2.67. Note also the descriptive set theory, which studies the internal structure of sets, depending on the operations by which it can be constructed from simpler sets. These problems will be partly considered in Floor 4 (see Block C and Block D).

We will return to the set theory at the end of the final floor of Mathematics Building, where this theory will be considered on the base of category theory principles. 
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